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Abstract
After an introduction into 100 years of research on superfluidity and the concept of the
BCS–BEC crossover, we describe recent experimental studies of a spin-polarized Fermi gas
with strong interactions. Tomographically resolving the spatial structure of an inhomogeneous
trapped sample, we have mapped out the superfluid phases in the parameter space of
temperature, spin polarization, and interaction strength. Phase separation between the
superfluid and the normal component occurs at low temperatures, showing spatial
discontinuities in the spin polarization. The critical polarization of the normal gas increases
with stronger coupling. Beyond a critical interaction strength all minority atoms pair with
majority atoms, and the system can be effectively described as a boson–fermion mixture.
Pairing correlations have been studied by rf spectroscopy, determining the fermion pair size and
the pairing gap energy in a resonantly interacting superfluid.

(Some figures in this article are in colour only in the electronic version)

1. From 1908 to 2008

The field of low-temperature physics has a long tradition.
Many people regard the liquefaction of helium in 1908 as the
beginning of modern low-temperature physics. At LT25, we
celebrated the 100th anniversary of this discovery, and during
the conference excursion, many participants of LT25 made a
pilgrimage to Leiden, where the original equipment used by
Onnes is on display.

This long-standing tradition continues in the research
on ultracold bosonic and fermionic atomic gases, and it is
interesting to draw a few analogies between current research
and what happened 100 years ago. Many cold fermion clouds
are cooled by sympathetic cooling with a bosonic atom which
is evaporatively cooled into or close to Bose condensation.
Popular combinations are 6Li and 23Na (used in our work
at MIT), and 40K and 87Rb. It is remarkable that the first
fermionic superfluids were also cooled ‘sympathetically’ by
ultracold bosons (liquefied 4He) when Onnes cooled down
mercury in 1911, finding that the resistivity of the metal
suddenly dropped to nonmeasurable values at TC = 4.2 K,
it became ‘superconducting’. Tin (at TC = 3.8 K) and lead (at
TC = 6 K) showed the same remarkable phenomenon. This
was the discovery of superfluidity in an electron gas.

Although superfluidity of bosons was directly observed
only in 1938 [1, 2], a precursor was already observed earlier
by Onnes when he lowered the temperature of the liquefied
4He below the λ-point at Tλ = 2.2 K. In his Nobel lecture
in 1913, he notes ‘that the density of the helium, which at
first quickly drops with the temperature, reaches a maximum
at 2.2 K approximately, and if one goes down further even
drops again. Such an extreme could possibly be connected
with the quantum theory’ [3]. But instead of studying, what we
know now was the first indication of superfluidity of bosons, he
first focused on the behavior of metals at low temperatures and
observed superconductivity in 1911.

The fact that bosonic superfluidity and fermionic
superfluidity were first observed at very similar temperatures,
is due to purely technical reasons (because of the available
cryogenic methods) and rather obscures the very different
physics behind these two phenomena. Bosonic superfluidity
occurs at the degeneracy temperature, i.e. the temperature T
at which the spacing between particles n−1/3 at density n
becomes comparable to the thermal de Broglie wavelength

λ =
√

2π h̄2

mkB T , where m is the particle mass. The predicted

transition temperature of TBEC ∼ 2π h̄2

m n2/3 ≈ 3 K for liquid
helium at a typical density of n = 1022 cm−3 coincides
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with the observed lambda point. In contrast, the degeneracy
temperature (equal to the Fermi temperature TF ≡ EF/kB,
where EF is the Fermi energy) for conduction electrons is
higher by the mass ratio m(4He)/me, bringing it up to several
ten-thousand degrees. Of course, we know now, from the
work of Bardeen et al [4], that the critical temperature for
superfluidity is reduced from the degeneracy temperature to
the Debye temperature TD (since electron–phonon interactions
lead to Cooper pairing) times an exponentially small prefactor,
e−1/ρF|V |, with the electron–electron interaction V , attractive
for energies smaller than kBTD and the density of states at the
Fermi energy, ρF = mekF/2π2h̄2. The Debye temperature
is typically 100 times smaller than the Fermi energy, and the
exponential factor suppresses the transition temperature by
another factor of 100, with the result that typical values for
Tc/TF are 10−4.

When the interactions between the electrons are param-
eterized by an s-wave scattering length a, the transition
temperature is given by the expression

TC,BCS = eγ

π

8

e2
EFe−π/2kF |a| (1)

with Euler’s constant γ , and eγ ≈ 1.78. Now, for resonantly
interacting fermions (i.e. near a Feshbach resonance), the
scattering length a becomes infinite. The above equation
is no longer valid, but implies correctly that the transition
temperature will approach the Fermi temperature TF. The
value of TC for a = ∞ (i.e. at unitarity) has been calculated
analytically [5–8], via renormalization-group methods [9] and
via Monte Carlo simulations [10, 11]. The result is TC = 0.15–
0.16TF [8, 11]. It is at the unitarity point that fermionic
interactions are at their strongest. Further increase of attractive
interactions will lead to the appearance of a bound state and
turn fermion pairs into bosons. As a result, the highest
transition temperatures for fermionic superfluidity are obtained
around unitarity and are on the order of the degeneracy
temperature. Finally, almost 100 years after Onnes, it is not just
an accidental coincidence anymore that bosonic and fermionic
superfluidity occur at similar temperatures! It is in this regime
that our experiments are conducted.

2. Ultralow-density condensed matter physics

Many people regard the extremely low nanokelvin tempera-
tures of ultracold atoms as their distinguishing feature. One
can take the position that what matters more is their extreme
diluteness, at number densities around 1013 or 1014 cm−3, a
million times more dilute than air. With interatomic distances
of several 100 nm, the atoms are fairly isolated, and allow the
application of all the methods for manipulation and detection
developed in atomic physics, including RF spectroscopy,
optical detection, preparation in different hyperfine states.
Most importantly, since the interactions are short range, these
gases are ideal realizations of hard sphere bosons and fermions,
idealized by a delta function potential and characterized by the
s-wave scattering length. Therefore, their properties are fully
described by simple Hamiltonians (such as the hard sphere

Bose gas, or, when exposed to a periodic potential, by Hubbard
models).

This gives cold atoms a new and important link between
the materials of the real world with all their richness and
complexity, and the simple models used for their description
in many-body physics. Often, predictions of models cannot
be rigorously tested, because available materials have more
complexity (and impurities) than the models, or, with the case
of high-TC superconductors as an example, it is not even clear
if the models capture the essential physics of the material.
In contrast, using the tools of atomic physics, it is possible
to exactly engineer Hamiltonians for ultracold atoms. In this
regard, cold atom experiments are quantum simulations of
Hamiltonians, but we prefer to say that they realize new forms
of matter, which are described by these Hamiltonians.

Of special interest are Hamiltonians which cannot be
solved, even numerically. In this case, cold atom experiments
may become a tool to verify or falsify whether certain
approximation schemes are adequate, i.e. they capture the
essential physics either in a qualitative or quantitative way.
One example is the fermionic Hubbard model with repulsive
interactions [12] suggested as a toy model for high-TC

superconductors, but there is so far no rigorous proof that its
ground state is a d-wave superfluid.

The growing list of condensed matter systems which
have been realized and studied with cold atoms include the
weakly interaction Bose gas [13, 14], the Bose–Hubbard model
with the superfluid to Mott insulator transition [15], several
regimes of the hard sphere one-dimensional Bose gas (Yang–
Yang thermodynamics [16], the Tonks–Girardeau gas [17]),
fermions with ‘infinite’ interaction strength (i.e. resonant
interactions in the unitarity limit) [18], the BEC–BCS
crossover [18], the Fermi–Hubbard model with the crossover
to the Mott insulator [19, 20], and Anderson localization of
non-interacting matter waves [21, 22].

3. Realization of the BEC–BCS crossover

When the theory of superconductivity was developed in the
50s, there were controversial discussions about the role of
Bose–Einstein condensation. Schafroth, Blatt and Butler
speculated that a Bose–Einstein condensate of electron pairs
is responsible for superconductivity, but could formalize their
ideas only for the case of localized pairs [23]. In contrast,
Bardeen, Cooper and Schrieffer pointed out that, for typical
conditions, there are around 106 electrons in a coherence
volume, and therefore the BCS transition is not analogous to
Bose–Einstein condensation [4]. We know now that BEC and
BCS are the two-limiting cases of the BCS–BEC crossover
which smoothly connects the so-called pairing in momentum
space (BCS limit) with localized pairs (BEC limit), and the
condensation of preformed pairs (the bosons in the BEC limit)
with pairing occurring only at the phase transition (BCS).

Soon after the formulation of the BCS theory, Blatt and
others showed (see e.g. [24] and references therein) that the
BCS wavefunction

|�BCS〉 =
∏

k

(uk + vkc†
k↑c†

−k↓) |0〉 (2)
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Figure 1. Observation of vortices in a strongly interacting Fermi gas, below, at and above the Feshbach resonance. This establishes
superfluidity and phase coherence in fermionic gases. After a vortex lattice was created at 812 G, a field favorable for generating vortices, the
field was ramped in 100 ms to 792 G (BEC side), 833 G (resonance) and 853 G (BCS side), where the cloud was held for 50 ms. The field of
view of each image is 880 μm × 880 μm. More recent version of figure 3 in [30].

can be expressed as an anti-symmetrized wavefunction of N/2
fermion pairs:

|�〉N = b†N/2 |0〉 . (3)

In this formulation, the BCS wavefunction mixes up the
number of particles (in the spirit of a grand-canonical
description), whereas the product of pairs assumes a fixed
number of fermions, but both approaches can be formulated
for fixed and fluctuating particle numbers.

Here the pair creation operator

b† =
∑

k

ϕkc†
k↑c†

−k↓ (4)

is defined using the creation operator c†
k↑ for particles

with momentum k, the Fourier transform ϕ(r1 − r2) =∑
k ϕk

eik·(r1−r2)√
�

of the pair wavefunction ϕ(r1, r2) and the
volume �. To write the BCS wavefunction as a ‘condensate
of pairs’ is the essence of the BCS–BEC crossover, since
one can now define pair wavefunctions ϕ(r1, r2) for smaller
and smaller pair size and approach the BEC limit of isolated
bosons. However, the credit for having predicted the possibility
of such a crossover usually goes to Eagles for an early
suggestion [25] and to Leggett for a complete presentation of
the concept [26].

It is only in the limit of small pairs (i.e. pairs spread out
in momentum space), that the pair operators b† obey bosonic
commutation relations. For the commutators, one obtains
[b†, b†] = 0, [b, b] = 0 and [b, b†] = ∑

k |ϕk |2(1 − nk↑ −
nk↓). The third commutator is equal to one only in the limit
where the pairs are tightly bound and occupy a wide region
in momentum space. In this case, the occupation numbers
nk of any momentum state k are very small and [b, b†]− ≈∑

k |ϕk |2 = ∫
d3r1

∫
d3r2 |ϕ(r1, r2)|2 = 1.

The realization of the BCS–BEC crossover requires
a wide tunability of density [25] or of the attractive
interactions between the fermions [26]. After decades of
theoretical work, it was only in 2003, that the crossover
region was experimentally accessed using ultracold atoms.

The tunability of the interactions was implemented using
Feshbach resonances. By varying a magnetic field, a
(highly vibrationally excited) molecular state is tuned into
resonance with two colliding fermions, resulting in a scattering
resonance. By tuning across the resonance, the pair size of
the fermions could be varied from (somewhat) larger than the
interparticle spacing (BCS side) to (somewhat) smaller (BEC
side).

In most situations, the onset of superfluidity implies the
formation of a pair condensate [27, 18]. The BEC–BCS
crossover was first characterized by monitoring the condensate
fraction [28, 29], until superfluid flow was directly observed
through quantized vortex lattices in rotating clouds [30]
(figure 1). The field has been reviewed in the Varenna
proceedings [18].

4. Superfluidity with population imbalance

Once a superfluid (or superconducting) system is realized,
one characterizes the stability of the superfluid phase by
exploring all the possible ways of destroying it, e.g. by
raising the temperature, applying a critical magnetic field
(which for neutral superfluids would correspond to a critical
angular velocity), varying the strength of the interaction, and
by imbalancing the population of the spin up and down
components. Each way provides a unique insight into
the mechanism of pairing. In the BCS picture, pairing
occurs preferably at the Fermi surface and therefore becomes
energetically less favorable if the two Fermi surfaces do not
overlap. Eventually superfluidity will break down when the
difference in Fermi energies exceeds the energy gain 	 from
pairing. This is the so-called Chandrasekhar–Clogston (CC)
limit of superfluidity [31, 32]. Pairing and superfluidity in
an imbalanced Fermi mixture has been an intriguing topic
for many decades, especially because of the possibility of
new exotic ground states such as the Fulde–Ferrell–Larkin–
Ovchinnikov (FFLO) state [33, 34] in which either the phase or
the density of the superfluid has a spatial periodic modulation.
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Figure 2. Spatial structure of a trapped Fermi mixture with population imbalance. (a) The in situ column density distributions are obtained
using a phase-contrast imaging technique [39]. The probe frequencies of the imaging beam are different for the two images so that the first
image measures the density difference n↑ − n↓ and the second image measures the weighted density difference 0.76n↑ − 1.43n↓. (b) The
smooth column density profiles are obtained from the elliptical averaging of the images under the local density approximation (red/upper
profile: majority, blue/lower profile: minority, black: difference). (c) The reconstructed three-dimensional density profiles. (d) The spin
polarization profile shows a sharp increase, indicating the phase separation between a superfluid core and an outer normal region. The vertical
dashed line marks the location of the phase boundary.

Imbalanced Fermi systems can be realized with electron
gases by applying a magnetic field. However, the situation
in conventional superconductors is more complicated due to
spin–orbit coupling, i.e., the field is shielded by the Meissner
effect. On the other hand, in atomic Fermi gases one can
prepare a mixture with an arbitrary population ratio, since
collisional relaxation processes are very slow. A few years ago,
using population-imbalanced atomic Fermi gases, a behavior
consistent with the CC limit has been observed [35, 36],
i.e., a superfluid becomes more robust against imbalance with
stronger coupling. The apparent absence of the CC limit
in mesoscopic, highly elongated samples [37, 38] is not yet
understood and seems to depend on the aspect ratio of the cloud
shape.

In the remainder of the paper, we present recent results
of the MIT group on the BEC–BCS crossover. One
study addresses the phase diagram of a two-component
Fermi gas of 6Li atoms with strong interactions. We have
identified and/or determined several important critical points
including a tricritical point where the superfluid-to-normal
phase transition changes from first-order to second-order,
critical spin polarizations of the normal phase, and a critical
interaction strength where superfluidity can no longer be
quenched by population imbalance [39–41]. We also present
recently measured rf spectra, where we have determined the
fermion pair size and the superfluid gap energy in a resonantly
interacting Fermi gas [42, 43].

5. Two-component Fermi mixture in a harmonic
potential

In our experiments, we prepared a two-component spin
mixture of 6Li atoms, using two states of the three lowest

hyperfine states, around a Feshbach resonance. The population
imbalance between the two components was controlled by
a radio frequency (rf) sweep with an adjustable sweep rate.
The atom cloud was confined in a three-dimensional harmonic
trap with cylindrical symmetry, thus having an inhomogeneous
density distribution. Due to the population imbalance, the
chemical potential ratio of the majority (labeled as spin ↑)
and the minority (spin ↓) components varies spatially over
the trapped sample. Under the local density approximation
(LDA), each sample represents a line in the phase diagram.
Using spatially resolved measurements, we have mapped out
the phase diagram of the system. The temperature was
controlled by adjusting the trap depth, which determined the
final temperature of evaporative cooling.

For typical conditions, the spatial size of our sample was
∼150 μm × 150 μm × 800 μm with a total atom number
of ∼107 and a radial (axial) trap frequency of fr = 130 Hz
( fz = 23 Hz). Our experiments benefit from the large size
of the sample. Using a phase-contrast imaging technique, we
obtained the in situ column density distributions of the two
components ñ↑,↓(r), and the three-dimensional density profiles
n↑,↓(r) were tomographically reconstructed from the averaged
column density profiles (figure 2). The imaging resolution of
our setup was ∼2 μm.

At low temperature, the outer part of the sample is
occupied by only the majority component, forming a non-
interacting Fermi gas. This part fulfils the definition of an ideal
thermometer, namely a substance with exactly understood
properties in contact with a target sample. We determined
the temperature from the in situ majority wing profiles. This
in situ method provides a clean solution for the long-standing
problem of measuring the temperature of a strongly interacting
sample.

4
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Figure 3. Phase diagram of a two-component Fermi gas with strong interactions. (a) With resonant interactions (1/kF↑a = 0). At low
temperature, the system shows a first-order superfluid-to-normal phase transition via phase separation, which disappears at a tricritical point
where the nature of the phase transition changes from first-order to second-order. (b) The critical polarization σc of a partially-polarized
normal phase increases with stronger interactions. Above a critical interaction strength (1/kF↑a ≈ 0.7, σc = 1), even a very small amount of
impurity atoms can pair with majority atoms to form a superfluid.

The parameter space of the system can be characterized
by three dimensionless quantities: reduced temperature T/TF↑,
interaction strength 1/kF↑a and spin polarization σ = (n↑ −
n↓)/(n↑ + n↓), where TF↑ and kF↑ are the Fermi temperature
and wavenumber of the majority component, respectively, and
a is the scattering length of the two components. The standard
BCS–BEC crossover physics takes place in the σ = 0, equal-
mixture plane.

6. Phase diagram at unitarity

In the case of fixed particle numbers, it has been suggested
that unpaired fermions are spatially separated from a BCS
superfluid of equal densities due to the pairing gap energy
in the superfluid region [44–46]. At low temperature, we
have observed such a phase separation between a superfluid
and a normal component in a trapped sample. A spatial
discontinuity in the spin polarization clearly distinguishes two
regions (figure 2). By correlating a non-zero condensate
fraction [35] with the existence of the core region, we verified
that the inner core is superfluid [39]. At the phase boundary
two critical polarizations σs and σc are determined for a
superfluid and normal phase, respectively. σs 
= σc means that
there is a thermodynamically unstable window, σs < σ < σc,
leading to a first-order superfluid-to-normal phase transition.
As the temperature increases, the discontinuity reduces with
decreasing σc and increasing σs, and eventually disappears
above a certain temperature. This is a tricritical point where
the nature of the phase transition changes from first-order to
second-order [47]. Above the tricritical point, the system
shows smooth behavior across the superfluid-to-normal phase
transition in density profiles and condensate fraction, which is
characteristic of a second-order phase transition.

The phase diagram with resonant interactions (1/kF↑a =
0) is presented in figure 3(a) [40], characterized by three
distinct points: the critical temperature Tc0 for a balanced
mixture, the critical polarization σc0 of a normal phase at zero
temperature and the tricritical point (σtc, Ttc). From linear
interpolation of the measured critical points, we have estimated

Tc0/TF↑ ≈ 0.15, σc0 ≈ 0.36 and (σtc, Ttc/TF↑) ≈ (0.20, 0.07).
The quantitative analysis of the in situ density profiles at the
lowest temperature reveals the equation of state of a polarized
Fermi gas [48], showing that the critical chemical potential
difference is 2hc = 2 × 0.95μ, where μ = (μ↑ + μ↓)/2.
The pairing gap energy 	 of a superfluid has been measured
to be 	 � μ [43], and the observation of hc < 	 excludes
the existence of a polarized superfluid at zero temperature. A
polarized superfluid at finite temperature results from a thermal
population of spin-polarized quasiparticles [47].

7. Strongly interacting Bose–Fermi mixture

On the BEC side, two different fermions in free space have a
stable bound state, forming a bosonic dimer which undergoes
Bose–Einstein condensation at low temperature. Therefore,
in the BEC limit a two-component Fermi gas with population
imbalance will evolve into a binary mixture of bosonic dimers
and unpaired excess fermions. Strong interactions and high
degeneracy pressure can affect the structure of the composite
boson and eventually quench the superfluid state. This is the
reason why we have a partially-polarized normal phase near
resonance even at zero temperature. With stronger coupling,
the critical polarization σc of a partially-polarized normal phase
increases, and becomes unity at a critical interaction strength
of 1/kF↑a ≈ 0.7 [41]. This means that beyond the critical
coupling all minority atoms pair up with majority atoms and
form a Bose condensate. This is the regime where a polarized
two-component Fermi gas can be effectively described as a
Bose–Fermi mixture.

In the limit of a BF mixture [49], we have observed
repulsive interactions between the fermion dimers and
unpaired fermions. They are parameterized by an effective
dimer–fermion scattering length of abf = 1.23(3)a. This
value is in reasonable agreement with the exact value abf =
1.18a which has been predicted over 50 years ago for the
three fermion problem [50], but has never been experimentally
confirmed. Our finding excludes the mean-field prediction
abf = (8/3)a. The boson–boson interactions were found to

5
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Figure 4. Tomographic RF spectroscopy of strongly interacting Fermi mixtures. A trapped, inhomogeneous sample has various phases in
spatially different regions. The spectra of each region (red/upper profile: majority, blue/lower profile: minority) reveals the nature of pairing
correlation of the corresponding phase. (a) Balanced superfluid. (b) Polarized superfluid. The additional peak in the majority spectrum is the
contribution of the excess fermions, which can be identified as fermionic quasiparticles in a superfluid. From the separation of the two peaks,
the pairing gap energy of a resonantly interacting superfluid has been determined [43]. (c) Highly polarized normal gas. The minority peak no
longer overlaps with the majority spectrum, indicating the transition to polaronic correlations.

be stronger than the mean-field prediction in agreement with
the Lee–Huang–Yang prediction [51]. Including the LHY
correction, the effective dimer–dimer scattering length was
determined to be abb = 0.55(1)a, which is close to the exact
value for weakly bound dimers of abb = 0.6a.

8. Tomographic RF spectroscopy with a new
superfluid

RF spectroscopy of a two-component Fermi gas measures a
single-particle excitation spectrum by flipping the spin state
of an atom to a third spin state. Since a fermion pair
can be dissociated via spin flip, RF spectroscopy provides
valuable information about the pair such as binding energy
and size. In early experiments [52, 53], a spectral shift
has been observed in a Fermi gas at low temperature and
interpreted as a manifestation of pairing. However, it turned
out that the spectral line shape is severely affected by the strong
interactions of the third, final spin state and broadened due to
the inhomogeneous density distribution of a trapped sample,
preventing clear comparison of the experimental results to
theory. Recently, we have developed several experimental
techniques to overcome these problems. In order to minimize
final state effects we have exploited a new spin mixture of
states |1〉 and |3〉 of 6Li atoms [42] (corresponding to |F =
1/2, mF = 1/2〉 and |F = 3/2, mF = −3/2〉 at low field),
and using a tomographic technique, we have obtained local RF
spectra from an inhomogeneous sample [54].

Figure 4 shows the RF spectra of the various phases
in a trapped sample with a population imbalance. For a
balanced superfluid, the majority and the minority spectra
completely overlap, showing the characteristic behavior of pair
dissociation, i.e. a sharp threshold and a slowly decreasing
high-energy tail. From the spectral width, we have determined
the pair size to be 2.6(2)/kF at unitarity, about 20% smaller
than the interparticle spacing [42]. These are the smallest
pairs so far observed in fermionic superfluids, highlighting
the importance of small fermion pairs for superfluidity at high
critical temperature [55].

Excess fermions in a low-temperature superfluid consti-
tute quasiparticles populating the minimum of the dispersion
curve. The RF spectrum of a superfluid with such quasipar-
ticles shows two peaks, which, in the BCS limit, would be
split by the superfluid gap 	. Therefore, RF spectroscopy of
quasiparticles is a direct way to observe the superfluid gap in
close analogy with tunneling experiments in superconductors.
In a polarized superfluid near the phase boundary, we have
obtained a local majority spectrum of a double-peak structure,
from which the superfluid gap has been determined to be
	 = 0.44(3)EF↑ at unitarity [43]. In addition, a Hartree term
of −0.43(3)EF↑ is necessary to explain the observed spectral
behavior.

The peak positions of the majority and the minority
spectra become different in the partially-polarized normal
phase, but still overlap in the high-energy tail. At large spin
polarization, the limit of a single minority immersed in a
majority Fermi sea is approached, where several theoretical
studies suggest a polaron picture, associating the minority
with weakly interacting quasiparticles in a normal Fermi
liquid [56–58]. We found that these different kinds of pairing
correlations are smoothly connected across the superfluid-to-
normal phase transition at finite temperature.

9. Summary and discussion

In a series of experiments with population-imbalanced Fermi
mixtures near Feshbach resonances, we have established
the phase diagram of a two-component Fermi gas with
strong interactions. This includes the identification of a
tricritical point at which the critical lines for first-order and
second-order phase transitions meet, and the verification of a
zero-temperature quantum phase transition from a balanced
superfluid to a partially-polarized normal gas at unitarity.
The observed critical points such as the critical polarization
of a normal phase and the critical interaction strength of a
composite boson in a Fermi sea provide quantitative tests for
theoretical treatments of strongly interacting fermions.

Our work can be summarized with the phase diagram of
the system in a 3D parameter space (versus temperature, spin

6
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Bose-Fermi
mixture

Normal
Bose Liquid

Fermi Liquid
Superfluid
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Figure 5. Various phases of a two-component Fermi gas. The
structure of the phase diagram is illustrated in the parameter space of
temperature, interaction strength and spin polarization.

polarization and interaction strength) shown in figure 5. For
a complete understanding, this macroscopic characterization
of the different phases should be complemented by an
investigation of their microscopic properties. At low
temperature, one can interpret the observed polarized
superfluid as a result of a thermal population of spin-polarized
quasiparticles. However, the behavior at higher temperature
or/and in a stronger coupling regime is not yet completely
understood and could include a gapless region (h > 	).
The nature of a partially-polarized normal phase near the
resonance is also an interesting subject. Measurement of the
binding energy and the effective mass of a minority atom might
test the polaron picture and establish the polaron-to-molecule
transition near a critical interaction strength. Another open
question is whether the Fermi liquid description is still valid
for high minority concentrations, where Pauli blocking in the
minority Fermi sea might play an important role. Furthermore,
it has been speculated that exotic pairing states might exist
in the partially-polarized phase [59]. So far, predicted exotic
superfluid states such as the breached-pair state in a stronger
coupling regime and the FFLO state in a weaker coupling
regime have not been observed, but they may be hidden in thin
layers near the superfluid–normal boundary. This discussion
underlines that the population-imbalanced Fermi system is
the richest system realized thus far with ultracold gases and
therefore nicely illustrates the novel approach to engineer
interesting many-body systems using the tools and methods of
atomic physics.
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